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ABSTRACT 

Various exceptional sets (such as Helson sets and sets of multiplicity) are 
constructed by means of a functional method using differentiable mappings. 

§1. In this note we prove theorems related to the one following: 

Let E be a compact set in ( - c~, ~ )  and suppose that for a sequence 2, -~ + 

e(2n x) ~ 1 uniformly in E (where e(t) - e2~'t). 

Then there exists a function ~b of class C®( - ~ ,  oo) so that ~b' > 0, and ~b(E) is 

a Kronecker set. 

For  definitions, and examples of Kronecker sets constructed by diverse tech- 

niques see [2, 4, 5, 8]. 

It is also proved that the somewhat stronger conditions ~b e C 2, ~b > 0, ~b" > 0 

cannot be attained for certain sets E of the type prescribed (called "Dirichlet sets" 

in [2]). A related negative example is given in [2]. 

Applying similar arguments to a class of sets close to the one above, we con- 

struct Helson sets [-3, 5] of a new type. 

§2. Let E be interior to a compact interval I and Coo(l) the usual linear metric 

space of smooth real-valued functions on I. We operate for the most part in the 

subspace C ~ =  C,(E;1)~_ C°°(I) of functions 4) such that ~ ' =  1 on E and 

~b t"l = 0 on E for n > 2. ( I f E  is perfect only the requirement on ~b' need be stated.) 

The technical argument for the theorem stated in §1 is accomplished below; the 

passage to that theorem is then exactly as in [4]. A convenient abbreviation is 

Ilflls = sup If(x) [, x e S. 

THEOREM 1. Let the compact set E and the sequence (2.) be as in §1 and let h 

be a continuous unimodular function on E. Then for each element (% in C .  

there is a sequence ((~.) in C .  such that 
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tl - h 0, II - 4>0 lice 0. 

Proof. We construct a sequence (4>,) convergent to 4>0 in any fixed C-norm 

(r _>__ 1). First, 4>0' can be approximated in C" by a function ~' ,  equal to 1 on a 

neighborhood of E. This is the "C'-synthesis of 4>0'" and is possible by [7]; the 

latter work contains a very deep theorem on synthesis. Integration of ~ '  yields 

a function • close to q~o in Cr-norm, while ~,' = 1 on a neighborhood of E. Now E 

has Lebesgue measure 0, so that in the neighborhood of E we can find a covering 

by a disjoint closed intervals I s = I-a,, b,] (1 _< s < N). Because ~k' = 1 on each Is 

we have 

] e(X.0(as))] = ] e(X.x) - e(2.as)], for x e I  s. 

Hence e(2.$) - e(;~.O(a.)) ~ 0 uniformly on E C~ 1.. Now let O. be chosen so that 

O,' = 0 on each I,, while e(2,O,(a~))e(X,O(a~)) = h(a,). Because 2. ---> + oo this can 

be achieved while ~, --+ 0 in C :  

Now ~J + On belongs to C °°, while 

limsup 1[ e(2.~k + 2 . 0 , ) -  h [1~,,. =<_ [1 h(a~)-  h I[n ~,i ,. 

The norms on the left decrease to 0 with max (b, - as), and we obtain uniform 

approximation to h. 

§3. Let r > 2 be an integer and H = H, be the set of sums ~ff= ~ ek r -k ,  ek = 0 

or 1. For r > 5 there is a good analogue of Theorem 1; in general, however, we 

are able only to obtain a theorem about transforms of sets H, in the Euclidean 

plane R 2. (In fact the trick involved for r > 5 is less interesting than the more 

difficult approach necessary for r = 3,4.) In this connection see the work of 

Piateckii-Sapiro and Salem and Zygmund [3; V, VII. 

TI-mOR~M 2. Let  r >_ 5. Then,  excepting a set o f  f irs t  category in C , ( H ; I ) ,  

each func t ion  transforms H onto a Helson set. 

Proof. Let h be a continuous unimodular function on H, and 4>0 e C , .  We 

claim that there is a sequence (4>,) in C a . so that 

- 4>0 llc~o ~ o, lim sup II e(r"4>,) - h ll. _-< 2 sin (---~) < 1 .  11 4>. 

We proceed as in the proof of Theorem 1 and find again intervals I s. I f  n is 

sufficiently large then each interval I~ actually meeting H contains a point 

1 ~ r - k .  X~ = ek r -k + ~2 
1 n + l  
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Here xs need not belong to H. As before, we can modify ~bo to a function ~b so that 

e(r"c~(xs)) is any complex number of modulus 1 -  to be specified in a moment. 

Suppose now that 

x ~ I  s o H ,  say x =  e k r . Then 
1 

4~(x) 4~(x~)+ ~:(~k' .~)r-~+ I~ d 1 -k 
1 n + l \  

rnck(X ) = rn~(Xs) + U + W, 

1 1)_1< 1 where u ~ Z  and [wl < ~ ( r -  = ~. From the formula le ( t ) -  l) l = 2 lsinnt[, 

we find for x~Is  n H  

l e ( r " ~ ( x ) ) -  h(x) l _-< [e(r"~b(xs) ) - h(x)[ + 2 sin8,.  

Now the first term on the right can be made uniformly small by refinement of  the 

intervals. I~ and by appropriate choice of rnq~(xs) (modulo 1), thus the claim is 

verified. 

Using Baire's Theorem as in [4] we conclude that for all ~0, excepting a set 

of  first category, 

• l iminf II e(r" o) - h Z 2 s a n y ,  
n--q. O0 

for  every continuous unimodular h. To prove that then ~b(H) is a Helson set, 

let # be a complex measure in H. 

sup[ f e(r~c~)dg[ > s u p / f  hdp I-.611#[I 

= .4 H 11. 

See [5, p. 115]• That completes the proof• 

When r = 3,4 the device breaks down, although the theorem might hold for 

these values. 

THEOREM 3. 

mapping 

Let r >= 3. Then, excepting a set of the first category, each 

x-~ (~o(X), x), ~o c ,  (n,I)  

transforms H onto a Helson set in R 2. 
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P roo f  For  n = 1, 2, 3, ..., let H,  1, .-., H,  4 be the closed subsets of H determined 

by e,+ 1, e,+ 2. For  a moment we focus on H,  1 n I s. In the proof  of Theorem 3, let 

x~ be replaced by some y l e  H 1  c3 I .  Constructing 4) as before and taking any 

y e H,  1 c31 s we have 

r'O(y) = rn~(y~ 1) + u + ~ (~k t'n-k, 
n + 3  

where u ~ Z  and 5 k - 1 , 0 , 1 .  Thus I ~  . . -k] = z..+30~r <= (r - 1) - l r  -2 __< 1/18. 

In this way we construct functions 1 4 ~b,, ..., q~,, so that e(r"4),l), ...,e(r"~b, 4) give 

a good approximation to H on H,  1, . . . , H 4  respectively. 

Observe that if x ~ H,  ~ and y ~ Hff with 1 < i < j < 4, 

1 r-  = < iv I < ( r -  1) -1 r " x - r " y = u + v  with u ~ Z a n d ~  = = 

But this means that there are functions F.a, ..., F. 4, periodic in R E and bounded 

in C2-norm by some constant M,, so that 

F,i(r"x) = ai, s on H,  j (1 < i,j < 4). 

ao 
Again we apply Baire's Theorem to C , ,  but not via the norm-separability of 

the Banach space C(H). Instead, let {a} be a sequence of complex measures in H 

of norm 1, whose weak*-closed convex hull is the unit ball in the space of measures. 

Let V~ be the open subset of C,~° defined as follows: 

There exists a periodic function F(xl,x2) in R z, such that II F l]c~ < Mr and 

]£F(~o(X),X)d~ _> - 3 s i n  

This condition is certainly fulfilled if there is a set T_c H such that 

I a [(T) >- ~,F(qSo, x) = 0 on H ~ V and 

f r  da idal < . r e  F - d i a l -  = I~](r)" 3sm~ • 

Observe that the density of each V. is ensured by the construction given before; 
4 i oo as H = [..J~ H . ,  so c3 V. is a dense G~ in C , .  But that intersection contains only 

functions ~bo with the required properties. 

It  seems likely that similar theorems are true for the PV numbers > 2 [6], 

provided the plane is replaced by a space of large dimension. 
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{}4. In this paragraph the introduction of the spaces C .  is justified by a negative 

result for C2(I). Let B be a sequence of positive integers containing arbitrarily long 

sequences of consecutive integers, and let F be the set of sums ~.*ek2-k where 

ek = 0 or 1 and ~* means that e k = 0 when k E B. Plainly F has the property 

required of E in §1, and the condition on B is compatible with a technical condition: 

For each K the inequality I b 1 - 2b2 ]< K ( b ~  B) has only a finite number of 

solutions. 

Let # be the Lebesgue measure on F, the usual product measure. Observe that 

if u and v are positive integers and [u, v] n B = ~ then F contains all sums 
v - k  ~,,ek2 : an arithmetic progression of 2 v-u+lterm s and difference 2 -v. Let v be 

the probability distributed uniformly on this progression; then v is a factor of/~: 

for a probability v' in F we can write p = v * v'. Hence, for any continuous function 

t ~ o n F  

[ .fe(2dp)dP[ =<sup I fe(2 (x + y) )v (dy) l  , x ~ F .  

THEOREM 4. Let 49 ~C2(I) and qS'> O, (o"> O. Then the measure v can be 

chosen, as a function of 2 > O, so that the supremum on the right tends to 0 as 

2 ~ + oo. In particular q~(F) is a set of multiplicity in the narrow sense. 

Proof. The argument is suggested by Weyl's criterion for uniform distribution 

and an inequality of van der Corput [1, pp. 71-73] on exponential sums. Using 

the technical condition on B we can associate to each 2 > 2o an interval [u, v] 

so that 

(i) [ u , v ] n B = 0 ,  u - - * + o %  v - u ~ + o o  a s 2 ~ + c o ,  andei ther  

(ii) u + 2v = 3 [logA/log 2], or 

3 
(iii) u + 2v = ~ [log A/log 2]. 

We handle (ii) and (iii) in order. 

(ii) By Taylor's theorem, for 0 < m < 2 v-u+ 1, 

2~b(x + m2 -v) = 2qS(x) + 2~b'(x)2-"m + 20(mZ4 -~) 

= 2~b(x) + 2~b'(x)Z-"m + o(1). 

Now 22 - " =  o(1) and 22 -~ • 2 ~ - ~  + oo so the exponential sum is easily shown 

to be o(2~-"). 

(iii) By the inequality of [1, p. 71] it is enough to prove that for each fixed 

h __> 1, uniformly in x, 
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2v~  +1 e(24J(x + m2-~))e( -- 2~b(x + m2 -°  + h2-~)) = o  ( 2 ° t ) .  
m=0 

For  this purpose let D, denote differentiation with respect to 4. By the mean- 

value theorem 

0 [2¢(x + 42 -v) - 2 (x + 42-" + 

= - 24-Vh~b"(x + 42 -0 + Oh2-"), with 0 < 0 < 1, 

= - 24-"h($"(x)  + o(1)), when 0 < 4 < 2 °-u+l.  

2 4 
Here 24 -0 = o(1) while 24-~2 ~-~ = 2 2 - " - "  -~ + oo because - v - u + ~u  + 5v  

tends to + or. Thus  the bound  o (2 "-")  is obtained by geometrical reasoning on 

the distribution (modulo 1) o f  the sequence 

2~b(x + m 2 - " )  - 2~b(x + m 2 - "  + h2-V), 0 < m < 2 ° - "+ t .  

This proves Theorem 4. 

I t  is known that a Helson set is a set o f  uniqueness for  Fourier-Stieltjes trans-  

forms [5, p. 119] so that  Theorem 4 is indeed a complement  to the others. I t  would 

interesting to find conditions on ~b strong enough to yield 

f e(2(o)dlt = O(121 -~) for some ~ > 0. 
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