A FUNCTIONAL METHOD FOR LINEAR SETS, II.

BY

R. KAUFMAN

ABSTRACT

Various exceptional sets (such as Helson sets and sets of multiplicity) are constructed by means of a functional method using differentiable mappings.

§1. In this note we prove theorems related to the one following:

Let E be a compact set in $(-\infty, \infty)$ and suppose that for a sequence $\lambda_n \to +\infty$

 $e(\lambda_n x) \to 1$ uniformly in E (where $e(t) \equiv e^{2\pi it}$).

Then there exists a function ϕ of class $C^{\infty}(-\infty, \infty)$ so that $\phi' > 0$, and $\phi(E)$ is a Kronecker set.

For definitions, and examples of Kronecker sets constructed by diverse techniques see $[2, 4, 5, 8]$.

It is also proved that the somewhat stronger conditions $\phi \in C^2$, $\phi > 0$, $\phi'' > 0$ cannot be attained for certain sets E of the type prescribed (called "Dirichlet sets" in [2]). A related negative example is given in [2].

Applying similar arguments to a class of sets close to the one above, we construct Helson sets $[3, 5]$ of a new type.

§2. Let E be interior to a compact interval I and $C^{\infty}(I)$ the usual linear metric space of smooth real-valued functions on I. We operate for the most part in the subspace $C_*^{\infty} = C_*^{\infty}(E; I) \subseteq C^{\infty}(I)$ of functions ϕ such that $\phi' = 1$ on E and $\phi^{[n]} = 0$ on E for $n \ge 2$. (If E is perfect only the requirement on ϕ' need be stated.) The technical argument for the theorem stated in §1 is accomplished below; the passage to that theorem is then exactly as in $[4]$. A convenient abbreviation is $||f||_S \equiv \sup |f(x)|, x \in S.$

THEOREM 1. Let the compact set E and the sequence (λ_n) be as in §1 and let h *be a continuous unimodular function on E. Then for each element* ϕ_0 in C_*^{∞} *there is a sequence* (ϕ_n) *in* C_*^{∞} *such that*

Received October 16, 1968 and in revised form October 6, 1969.

294 R. KAUFMAN Israel J. Math..

$$
\|e(\lambda_n\phi_n)-h\|_E\to 0, \ \|\phi_n-\phi_0\|_{C^\infty}\to 0.
$$

Proof. We construct a sequence (ϕ_n) convergent to ϕ_0 in any fixed C⁻-norm $(r \ge 1)$. First, ϕ_0' can be approximated in C' by a function ψ' , equal to 1 on a neighborhood of E. This is the "C'-synthesis of ϕ_0 " and is possible by [7]; the latter work contains a very deep theorem on synthesis. Integration of ψ' yields a function ψ close to ϕ_0 in C^r-norm, while $\psi' = 1$ on a neighborhood of E. Now E has Lebesgue measure 0, so that in the neighborhood of E we can find a covering by a disjoint closed intervals $I_s = [a_s, b_s]$ ($1 \le s \le N$). Because $\psi' = 1$ on each I_s we have

$$
\left| e(\lambda_n \psi(x)) - e(\lambda_n \psi(a_s)) \right| = \left| e(\lambda_n x) - e(\lambda_n a_s) \right|, \text{ for } x \in I_s.
$$

Hence $e(\lambda_n \psi) - e(\lambda_n \psi(a_s)) \to 0$ uniformly on $E \cap I_s$. Now let ψ_n be chosen so that $\psi_n' = 0$ on each I_s , while $e(\lambda_n \psi_n(a_s))e(\lambda_n \psi(a_s)) = h(a_s)$. Because $\lambda_n \to +\infty$ this can be achieved while $\psi_n \to 0$ in C'.

Now $\psi + \psi_n$ belongs to C_*^{∞} while

$$
\limsup_{m \to \infty} ||e(\lambda_n \psi + \lambda_n \psi_n) - h||_{E \cap I_s} \leq ||h(a_s) - h||_{E \cap I_s}.
$$

The norms on the left decrease to 0 with max $(b_s - a_s)$, and we obtain uniform approximation to h.

§3. Let $r > 2$ be an integer and $H = H_r$ be the set of sums $\sum_{k=1}^{\infty} \epsilon_k r^{-k}$, $\epsilon_k = 0$ or 1. For $r \ge 5$ there is a good analogue of Theorem 1; in general, however, we are able only to obtain a theorem about transforms of sets H_r , in the Euclidean plane R^2 . (In fact the trick involved for $r \ge 5$ is less interesting than the more difficult approach necessary for $r = 3, 4$.) In this connection see the work of Piateckii-Sapiro and Salem and Zygmund [3; V, VII.

THEOREM 2. Let $r \geq 5$. Then, excepting a set of first category in $C_{*}^{\infty}(H;I)$, *each function transforms H onto a Helson set.*

Proof. Let h be a continuous unimodular function on H, and $\phi_0 \in C_*^{\infty}$. We claim that there is a sequence (ϕ_n) in C_*^{∞} so that

$$
\|\phi_n - \phi_0\|_{C^\infty} \to 0, \text{ lim sup }\|e(r^n\phi_n) - h\|_H \leq 2\sin\left(\frac{\pi}{8}\right) < 1.
$$

We proceed as in the proof of Theorem 1 and find again intervals I_s . If n is sufficiently large then each interval I_s actually meeting H contains a point

$$
x_{s} = \sum_{1}^{n} \varepsilon_{k} r^{-k} + \frac{1}{2} \sum_{n+1}^{\infty} r^{-k}.
$$

Here x_s need not belong to H. As before, we can modify ϕ_0 to a function ϕ so that $e(r^n\phi(x_s))$ is any complex number of modulus 1- to be specified in a moment. Suppose now that

$$
x \in I_s \cap H, \text{ say } x = \sum_{1}^{\infty} \varepsilon_k' r^{-k}. \text{ Then}
$$

$$
\phi(x) = \phi(x_s) + \sum_{1}^{n} (\varepsilon_k' - \varepsilon_k) r^{-k} + \sum_{n+1}^{\infty} (\varepsilon_k' - \frac{1}{2}) r^{-k},
$$

$$
r^n \phi(x) = r^n \phi(x_s) + u + w,
$$

where $u \in Z$ and $|w| \leq \frac{1}{2}(r-1)^{-1} \leq \frac{1}{8}$. From the formula $|e(t)-1| = 2 |\sin \pi t|$, we find for $x \in I_s \cap H$

$$
\left| e(r^n\phi(x)) - h(x) \right| \leq \left| e(r^n\phi(x_s)) - h(x) \right| + 2\sin\frac{\pi}{8}.
$$

Now the first term on the right can be made uniformly small by refinement of the intervals. I_s and by appropriate choice of $r^n\phi(x_s)$ (modulo 1); thus the claim is verified.

Using Baire's Theorem as in [4] we conclude that for all ϕ_0 , excepting a set of first category,

$$
\liminf_{n\to\infty}\, \left\|\,e(r^n\phi_0)-h\,\right\|_H\leqq 2\sin\frac{\pi}{8},
$$

for *every* continuous unimodular h. To prove that then $\phi(H)$ is a Helson set, let μ be a complex measure in H.

$$
\sup \left| \int e(r_n \phi) d\mu \right| \ge \sup \left| \int h d\mu \right| - .6 \|\mu\|
$$

= .4 \|\mu\|.

See $[5, p. 115]$. That completes the proof.

When $r = 3.4$ the device breaks down, although the theorem might hold for these values.

THEOREM 3. Let $r \geq 3$. Then, excepting a set of the first category, each *mapping*

$$
x \to (\phi_0(x), x), \quad \phi_0 \in C^{\infty}_*(H; I)
$$

transforms H onto a Helson set in R².

296 **R. KAUFMAN** Israel J. Math.,

Proof For $n = 1, 2, 3, \dots$, let H_n^1, \dots, H_n^4 be the closed subsets of H determined by $\varepsilon_{n+1}, \varepsilon_{n+2}$. For a moment we focus on $H_n^1 \cap I_s$. In the proof of Theorem 3, let x_s be replaced by some $y_s^1 \in H_n^1 \cap I$. Constructing ϕ as before and taking any $y \in H_n^{-1} \cap I_s$ we have

$$
r^{n}\phi(y) = r^{n}\phi(y_{s}^{1}) + u + \sum_{n+3}^{\infty} \delta_{k}r^{n-k},
$$

where $u \in Z$ and $\delta_k = -1, 0, 1$. Thus $\sum_{n=3}^{\infty} \delta_k r^{n-k} \leq (r-1)^{-1} r^{-2} \leq 1/18$. In this way we construct functions $\phi_n^1, \dots, \phi_n^4$, so that $e(r^n \phi_n^1), \dots, e(r^n \phi_n^4)$ give a good approximation to H on H_n ¹, ..., H_n ⁴ respectively.

Observe that if $x \in H_n$ and $y \in H_n^i$ with $1 \le i < j \le 4$,

$$
r^{n}x - r^{n}y = u + v
$$
 with $u \in Z$ and $\frac{1}{2}r^{-2} \leq |v| \leq (r - 1)^{-1}$.

But this means that there are functions F_n^1, \dots, F_n^4 , periodic in \mathbb{R}^2 and bounded in C^2 -norm by some constant M_r , so that

$$
F_n^i(r^n x) = \delta_{i,j}
$$
 on H_n^j ($1 \le i, j \le 4$).

Again we apply Baire's Theorem to C_*^{∞} , but not *via* the norm-separability of the Banach space $C(H)$. Instead, let $\{\sigma\}$ be a sequence of complex measures in H of norm 1, whose weak*-closed convex hull is the unit ball in the space of measures. Let V_{σ} be the open subset of C_{*}^{∞} defined as follows:

There exists a periodic function $F(x_1, x_2)$ in R^2 , such that $||F||_{C^2} \le M_r$, and

$$
\Big|\int_H F(\phi_0(x),x)d\sigma\Big|\geq \frac{1}{4}\Big(1-3\sin\frac{\pi}{18}\Big).
$$

This condition is certainly fulfilled if there is a set $T \subseteq H$ such that

$$
|\sigma|(T) \ge \frac{1}{4}, F(\phi_0, x) = 0 \text{ on } H \sim T \text{ and}
$$

$$
\int_T F - \frac{d\sigma}{d|\sigma|} |d\sigma| \le |\sigma|(T) \cdot 3\sin\frac{\pi}{18}.
$$

Observe that the density of each V_{σ} is ensured by the construction given before; as $H = \int_{A}^{A} H_{A}^{i}$, so $\cap V_{\sigma}$ is a dense G_{δ} in C_{\ast}^{∞} . But that intersection contains only functions ϕ_0 with the required properties.

It seems likely that similar theorems are true for the PV numbers > 2 [6], provided the plane is replaced by a space of large dimension.

§4. In this paragraph the introduction of the spaces C_*^{∞} is justified by a negative result for $C^2(I)$. Let B be a sequence of positive integers containing arbitrarily long sequences of consecutive integers, and let F be the set of sums $\sum_{k=1}^{k} e_k 2^{-k}$ where $\varepsilon_k = 0$ or 1 and Σ^* means that $\varepsilon_k = 0$ when $k \in B$. Plainly *F* has the property required of E in §1, and the condition on B is compatible with a technical condition:

For each K the inequality $|b_1 - 2b_2| < K$ ($b_i \in B$) has only a finite number of solutions.

Let μ be the *Lebesgue* measure on F , the usual product measure. Observe that if u and v are positive integers and $[u, v] \cap B = \emptyset$ then F contains all sums $\sum_{k}^{v} c_{k} 2^{-k}$: an arithmetic progression of 2^{v-u+1} terms and difference 2^{-v}. Let v be the probability distributed uniformly on this progression; then v is a *factor* of μ : for a probability v' in F we can write $\mu = v * v'$. Hence, for any continuous function ϕ on F

$$
\left|\int e(\lambda \phi) d\mu\right| \leq \sup \left|\int e(\lambda \phi(x+y)) v(dy)\right|, \qquad x \in F.
$$

THEOREM 4. Let $\phi \in C^2(I)$ and $\phi' > 0$, $\phi'' > 0$. Then the measure v can be *chosen, as a function of* $\lambda > 0$ *, so that the supremum on the right tends to* 0 *as* $\lambda \rightarrow +\infty$. In particular $\phi(F)$ is a set of multiplicity in the narrow sense.

Proof. The argument is suggested by Weyl's criterion for uniform distribution and an inequality of van der Corput [1, pp. 71-73] on exponential sums. Using the technical condition on B we can associate to each $\lambda > \lambda_0$ an interval [u, v] so that

- (i) $[u, v] \cap B = \emptyset$, $u \to +\infty$, $v-u \to +\infty$ as $\lambda \to +\infty$, and either
- (ii) $u + 2v = 3 \lfloor \log \frac{\lambda}{\log 2} \rfloor$, or

(iii)
$$
u + 2v = \frac{3}{2} [\log \lambda / \log 2].
$$

We handle (ii) and (iii) in order.

(ii) By Taylor's theorem, for $0 \le m < 2^{v-u+1}$,

$$
\lambda \phi(x + m2^{-v}) = \lambda \phi(x) + \lambda \phi'(x) 2^{-v} m + \lambda O(m^2 4^{-v})
$$

= $\lambda \phi(x) + \lambda \phi'(x) 2^{-v} m + o(1)$.

Now $\lambda 2^{-v} = o(1)$ and $\lambda 2^{-v} \cdot 2^{v-u} \rightarrow +\infty$ so the exponential sum is easily shown to be $o(2^{v-u})$.

(iii) By the inequality of [1, p. 71] it is enough to prove that for each fixed $h \geq 1$, uniformly in x,

298 **R. KAUFMAN** Israel J. Math.,

$$
\sum_{m=0}^{2^{v-u+1}} e(\lambda \phi(x+m2^{-v}))e(-\lambda \phi(x+m2^{-v}+h2^{-v}))=o(2^{v-u}).
$$

For this purpose let D_{ξ} denote differentiation with respect to ξ . By the meanvalue theorem

$$
D_{\xi}[\lambda \phi(x + \xi 2^{-\nu}) - \lambda \phi(x + \xi 2^{-\nu} + h 2^{-\nu})]
$$

= $-\lambda 4^{-\nu} h \phi''(x + \xi 2^{-\nu} + \theta h 2^{-\nu})$, with $0 < \theta < 1$,
= $-\lambda 4^{-\nu} h (\phi''(x) + o(1))$, when $0 \le \xi \le 2^{\nu - \nu + 1}$.

Here $\lambda 4^{-\nu} = o(1)$ while $\lambda 4^{-\nu} 2^{\nu-\nu} = \lambda 2^{-\nu-\nu} \rightarrow +\infty$ because $-\nu - u + \frac{2}{2}u + \frac{4}{2}v$

tends to $+\infty$. Thus the bound o(2^{v-u}) is obtained by geometrical reasoning on the distribution (modulo 1) of the sequence

$$
\lambda \phi(x + m2^{-v}) - \lambda \phi(x + m2^{-v} + h2^{-v}), \qquad 0 \le m < 2^{v-u+1}.
$$

This proves Theorem 4.

It is known that a Helson set is a set of uniqueness for Fourier-Stieltjes transforms [5, p. 119] so that Theorem 4 is indeed a complement to the others. It would interesting to find conditions on ϕ strong enough to yield

$$
\int e(\lambda \phi) d\mu = O(|\lambda|^{-\alpha}) \text{ for some } \alpha > 0.
$$

REFERENCES

1. J. W. S. Cassels, *An Introduction to Diophantine Approximations,* Cambridge, 1957.

2. J.-P. Kahane, *Sur les ensembles tangents par translation*, C. R. Acad. Sci. Paris, Ser. A. 237 (1968), 437--439.

3. J.-P Kahane and R. Salem, *Ensembles parfaits et shies trigonomdtriques,* Paris, 1963.

4. R. Kaufman, *A functional method for linear sets,* Israel J. Math. 5 (1967), 185-187.

5. W. Rudin, *Fourier Analysis on Groups,* Interscience, New York, 1962.

6. R. Salem, *Algebraic Numbers and Fourier Analysis,* Heath, Boston, 1963.

7. H. Whitney, *On ideals of differentiable functions,* Amer. J. Math. 70 (1948), 635-658.

8. I. Wik, *Some examples of sets with linear independence,* Ark. Mat. 5 (1964), 207-214.

UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS, 61801